ColdFusion 2025 Performance Metrics Database

Real-world performance benchmarks across different workload types, hardware configurations, and JVM tuning scenarios. All tests conducted with identical application code to demonstrate optimization impact.

Testing Methodology

Load Testing Tool

Apache JMeter 5.6 with realistic user behavior patterns and think times

Monitoring

PMT (Performance Monitoring Toolset) + FusionReactor for comprehensive metrics

Test Duration

30-minute sustained load tests with 10-minute warmup period

Environment

Isolated dedicated servers, Ubuntu 22.04 LTS, PostgreSQL 15 database

Key Performance Insights

60-70%
Response Time Reduction
G1GC + Heap Tuning vs Default
2-3x
Throughput Improvement
Full Optimization Stack
85%
GC Pause Reduction
G1GC vs CMS
40-50%
CPU Utilization Drop
Caching + JVM Tuning

Detailed Performance Metrics

ConfigurationWorkloadHardwareUsersP50 (ms)P95 (ms)P99 (ms)Req/secError %CPU %Mem %GC Pause (ms)
Baseline (Out-of-box CF 2025)
4 CPU, 8GB RAM
Default: -Xms2g -Xmx2g, CMS GC
api4 CPU, 8GB RAM250451894121,4562.00%62%78%125
Optimized (G1GC + Tuned Heap)
4 CPU, 8GB RAM
Tuned: -Xms4g -Xmx4g, G1GC, -XX:MaxGCPauseMillis=200
api4 CPU, 8GB RAM25028941782,3410.00%48%65%42
Optimized + Connection Pooling
8 CPU, 16GB RAM
Tuned: -Xms8g -Xmx8g, G1GC, optimized thread pools
api8 CPU, 16GB RAM50022821454,6870.00%52%62%38
Baseline (No Caching)
4 CPU, 8GB RAM
Default: -Xms2g -Xmx2g, CMS GC
page4 CPU, 8GB RAM200385124721564878.00%71%82%245
Template Cache + Query Cache
4 CPU, 8GB RAM
Default: -Xms2g -Xmx2g, CMS GC
page4 CPU, 8GB RAM2001564127891,1241.00%58%74%198
Full Optimization (Cache + G1GC + Redis)
4 CPU, 8GB RAM
Tuned: -Xms4g -Xmx4g, G1GC + Redis object cache
page4 CPU, 8GB RAM200671873342,5470.00%42%58%52
Enterprise Stack (CDN + Load Balancer + Redis)
8 CPU, 16GB RAM
Tuned: -Xms8g -Xmx8g, G1GC, optimized
page8 CPU, 16GB RAM500281563122,8470.00%34%62%45
Baseline (Default Settings)
8 CPU, 16GB RAM
Default: -Xms4g -Xmx4g, CMS GC
batch8 CPU, 16GB RAM50245689341523418412.00%89%91%1247
Optimized (Async Processing + G1GC)
8 CPU, 16GB RAM
Tuned: -Xms8g -Xmx8g, G1GC, async threads
batch8 CPU, 16GB RAM50987321456784561.00%72%68%156
Container Deployment (Kubernetes)
16 CPU, 32GB RAM
Container-optimized: -Xms16g -Xmx16g, G1GC
api16 CPU, 32GB RAM100018671238,9340.00%58%61%34
Baseline (Default)
4 CPU, 8GB RAM
Default: -Xms2g -Xmx2g, CMS GC
mixed4 CPU, 8GB RAM300278104518767346.00%76%84%287
Convective Performance Framework Applied
4 CPU, 8GB RAM
Optimized: -Xms4g -Xmx4g, G1GC, all optimizations
mixed4 CPU, 8GB RAM300893125671,8230.00%54%67%67

Configuration Comparisons

API Workload: Baseline vs Optimized (4 CPU, 8GB)

P95 Response Time
Baseline:
189ms
Optimized:
94ms
⚡ 50% faster
Throughput
Baseline:
1,456 req/s
Optimized:
2,341 req/s
⚡ 61% increase
GC Pause Time
Baseline:
125ms
Optimized:
42ms
⚡ 66% reduction
Optimizations Applied: G1GC, Heap tuning (-Xms4g -Xmx4g), Connection pool optimization, MaxGCPauseMillis=200

Page Rendering: No Cache vs Full Optimization (4 CPU, 8GB)

P50 Response Time
No Cache:
385ms
Optimized:
67ms
⚡ 83% faster
Throughput
No Cache:
487 req/s
Optimized:
2,547 req/s
⚡ 5.2x increase
Optimizations Applied: Template caching, Query caching, G1GC, Redis object cache, -Xms4g -Xmx4g

Hardware Scaling Analysis

API Workload Performance by Hardware Size

Medium (4 CPU, 8GB)
2,341 req/s @ 250 users
Large (8 CPU, 16GB)
4,687 req/s @ 500 users
X-Large (16 CPU, 32GB)
8,934 req/s @ 1,000 users

Efficiency: Near-linear scaling with proper JVM tuning. Doubling resources yields ~2x throughput when optimized.

Optimization Recommendations by Workload

🚀 API / REST Services

  • Critical: G1GC with MaxGCPauseMillis=200
  • Critical: Heap = 50-70% of RAM (-Xms = -Xmx)
  • High: Connection pool sizing (2x CPU cores)
  • High: Query result caching for frequent queries
  • Medium: Tomcat connector thread tuning
  • Expected: 60-70% response time improvement

📄 Page Rendering

  • Critical: Template caching enabled
  • Critical: Query caching with appropriate timespan
  • High: Redis/Memcached for object caching
  • High: G1GC for consistent response times
  • Medium: CDN for static assets
  • Expected: 70-85% response time improvement

⚙️ Batch Processing

  • Critical: Async processing with thread pools
  • Critical: Large heap (16GB+) with G1GC
  • High: Batch size optimization (1000-5000 records)
  • High: Database connection pooling
  • Medium: Parallel processing where possible
  • Expected: 50-65% processing time reduction

Implementation Resources

Need Performance Optimization Help?

Convective's performance experts can analyze your workload, apply proven optimization techniques, and deliver measurable improvements. Our Convective Performance Optimization Framework has delivered 40-60% performance gains on average.

Discuss Performance Optimization