ColdFusion 2025 Performance Metrics Database
Real-world performance benchmarks across different workload types, hardware configurations, and JVM tuning scenarios. All tests conducted with identical application code to demonstrate optimization impact.
Testing Methodology
Load Testing Tool
Apache JMeter 5.6 with realistic user behavior patterns and think times
Monitoring
PMT (Performance Monitoring Toolset) + FusionReactor for comprehensive metrics
Test Duration
30-minute sustained load tests with 10-minute warmup period
Environment
Isolated dedicated servers, Ubuntu 22.04 LTS, PostgreSQL 15 database
Key Performance Insights
Detailed Performance Metrics
Configuration | Workload | Hardware | Users | P50 (ms) | P95 (ms) | P99 (ms) | Req/sec | Error % | CPU % | Mem % | GC Pause (ms) |
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline (Out-of-box CF 2025) 4 CPU, 8GB RAM Default: -Xms2g -Xmx2g, CMS GC | api | 4 CPU, 8GB RAM | 250 | 45 | 189 | 412 | 1,456 | 2.00% | 62% | 78% | 125 |
Optimized (G1GC + Tuned Heap) 4 CPU, 8GB RAM Tuned: -Xms4g -Xmx4g, G1GC, -XX:MaxGCPauseMillis=200 | api | 4 CPU, 8GB RAM | 250 | 28 | 94 | 178 | 2,341 | 0.00% | 48% | 65% | 42 |
Optimized + Connection Pooling 8 CPU, 16GB RAM Tuned: -Xms8g -Xmx8g, G1GC, optimized thread pools | api | 8 CPU, 16GB RAM | 500 | 22 | 82 | 145 | 4,687 | 0.00% | 52% | 62% | 38 |
Baseline (No Caching) 4 CPU, 8GB RAM Default: -Xms2g -Xmx2g, CMS GC | page | 4 CPU, 8GB RAM | 200 | 385 | 1247 | 2156 | 487 | 8.00% | 71% | 82% | 245 |
Template Cache + Query Cache 4 CPU, 8GB RAM Default: -Xms2g -Xmx2g, CMS GC | page | 4 CPU, 8GB RAM | 200 | 156 | 412 | 789 | 1,124 | 1.00% | 58% | 74% | 198 |
Full Optimization (Cache + G1GC + Redis) 4 CPU, 8GB RAM Tuned: -Xms4g -Xmx4g, G1GC + Redis object cache | page | 4 CPU, 8GB RAM | 200 | 67 | 187 | 334 | 2,547 | 0.00% | 42% | 58% | 52 |
Enterprise Stack (CDN + Load Balancer + Redis) 8 CPU, 16GB RAM Tuned: -Xms8g -Xmx8g, G1GC, optimized | page | 8 CPU, 16GB RAM | 500 | 28 | 156 | 312 | 2,847 | 0.00% | 34% | 62% | 45 |
Baseline (Default Settings) 8 CPU, 16GB RAM Default: -Xms4g -Xmx4g, CMS GC | batch | 8 CPU, 16GB RAM | 50 | 2456 | 8934 | 15234 | 184 | 12.00% | 89% | 91% | 1247 |
Optimized (Async Processing + G1GC) 8 CPU, 16GB RAM Tuned: -Xms8g -Xmx8g, G1GC, async threads | batch | 8 CPU, 16GB RAM | 50 | 987 | 3214 | 5678 | 456 | 1.00% | 72% | 68% | 156 |
Container Deployment (Kubernetes) 16 CPU, 32GB RAM Container-optimized: -Xms16g -Xmx16g, G1GC | api | 16 CPU, 32GB RAM | 1000 | 18 | 67 | 123 | 8,934 | 0.00% | 58% | 61% | 34 |
Baseline (Default) 4 CPU, 8GB RAM Default: -Xms2g -Xmx2g, CMS GC | mixed | 4 CPU, 8GB RAM | 300 | 278 | 1045 | 1876 | 734 | 6.00% | 76% | 84% | 287 |
Convective Performance Framework Applied 4 CPU, 8GB RAM Optimized: -Xms4g -Xmx4g, G1GC, all optimizations | mixed | 4 CPU, 8GB RAM | 300 | 89 | 312 | 567 | 1,823 | 0.00% | 54% | 67% | 67 |
Configuration Comparisons
API Workload: Baseline vs Optimized (4 CPU, 8GB)
Page Rendering: No Cache vs Full Optimization (4 CPU, 8GB)
Hardware Scaling Analysis
API Workload Performance by Hardware Size
Efficiency: Near-linear scaling with proper JVM tuning. Doubling resources yields ~2x throughput when optimized.
Optimization Recommendations by Workload
🚀 API / REST Services
- Critical: G1GC with MaxGCPauseMillis=200
- Critical: Heap = 50-70% of RAM (-Xms = -Xmx)
- High: Connection pool sizing (2x CPU cores)
- High: Query result caching for frequent queries
- Medium: Tomcat connector thread tuning
- Expected: 60-70% response time improvement
📄 Page Rendering
- Critical: Template caching enabled
- Critical: Query caching with appropriate timespan
- High: Redis/Memcached for object caching
- High: G1GC for consistent response times
- Medium: CDN for static assets
- Expected: 70-85% response time improvement
⚙️ Batch Processing
- Critical: Async processing with thread pools
- Critical: Large heap (16GB+) with G1GC
- High: Batch size optimization (1000-5000 records)
- High: Database connection pooling
- Medium: Parallel processing where possible
- Expected: 50-65% processing time reduction
Need Performance Optimization Help?
Convective's performance experts can analyze your workload, apply proven optimization techniques, and deliver measurable improvements. Our Convective Performance Optimization Framework has delivered 40-60% performance gains on average.
Discuss Performance Optimization